Calmodulin conformational changes in the activation of protein kinases.
نویسنده
چکیده
The conformation of Ca2+/calmodulin changes from extended when free in solution to compact when bound in peptide complexes. The extent and kinetics of calmodulin compaction in association with Ca2+/calmodulin-dependent protein kinases (CaMKs), as well as target peptides, were investigated by fluorescence, resonance energy transfer and stopped-flow kinetics. Compaction of Ca2+/calmodulin labelled with resonance energy-transfer probes in association with target peptides was rapid (>350 s(-1)). With the target enzymes smooth-muscle myosin light-chain kinase, CaMKIV and CaMKII, the rates of calmodulin compaction were one-two orders of magnitude lower compared with those of the peptides and in the case of alphaCaMKII, ATP binding and Thr(286) auto-phosphorylation were required for calmodulin compaction. In the absence of nucleotides, Ca2+/calmodulin bound to alphaCaMKII in extended conformations, initially probably attached by one lobe only. Kinetic data suggest that in the activation process of Ca2+/calmodulin-dependent protein kinases, productive as well as unproductive complexes are formed. The formation of productive complexes with Ca2+/calmodulin thus may determine the rate of activation.
منابع مشابه
Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملP20: The Role of Protein Kinases in Memory
When an experience is encrypted into a long-lasting memory, it is believed that specific sets of neurons in the brain of the animal undergo changes including the strengthening of preexisting synapses and the growth and maintenance of new synaptic connections. These activity-dependent synaptic changes appear to require the coordination of a variety of cellular processes in spatially separated ce...
متن کاملConformational changes underlying calcium/calmodulin-dependent protein kinase II activation.
Calcium/calmodulin-dependent protein kinase II (CaMKII) interprets information conveyed by the amplitude and frequency of calcium transients by a controlled transition from an autoinhibited basal intermediate to an autonomously active phosphorylated intermediate (De Koninck and Schulman, 1998). We used spin labelling and electron paramagnetic resonance spectroscopy to elucidate the structural a...
متن کاملCalmodulin Binding to Dfi1p Promotes Invasiveness of Candida albicans
Candida albicans, a dimorphic fungus, undergoes hyphal development in response to many different environmental cues, including growth in contact with a semi-solid matrix. C. albicans forms hyphae that invade agar when cells are embedded in or grown on the surface of agar, and the integral membrane protein Dfi1p is required for this activity. In addition, Dfi1p is required for full activation of...
متن کاملStructural Basis for the Autoinhibition of Calcium/Calmodulin-Dependent Protein Kinase I
The crystal structure of calcium/calmodulin-dependent protein kinase I has been determined in the autoinhibited form. The C-terminal regulatory region of the enzyme forms a helix-loop-helix segment that extends across the two domains of the catalytic core, making multiple inhibitory interactions. Elements of the first regulatory alpha helix and the loop interfere with the binding site for pepti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2002